Patent Issued for Interventional Catheter Assemblies, Control Consoles and Adaptive Tubing Cassettes (USPTO 9775964)

Biotech Week |

By a News Reporter-Staff News Editor at Biotech Week -- According to news reporting originating from Alexandria, Virginia, by NewsRx journalists, a patent by the inventors Eubanks, Shannon (Woodinville, WA); Schubert, Keith (Redmond, WA); Bristol, Peter (Shoreline, WA); Vilbrandt, Patrick (Edmonds, WA), filed on , was published online on (see also BOSTON SCIENTIFIC LIMITED).

The assignee for this patent, patent number 9775964, is BOSTON SCIENTIFIC LIMITED (Hamilton, BM).

Reporters obtained the following quote from the background information supplied by the inventors: "Interventional techniques for removing disease such as atherosclerotic plaque, thrombus and other types of obstructions and partial obstructions from internal body lumens or cavities using interventional catheters are well-established. Interventional catheters may employ operating heads that break down and/or remove occlusive material using mechanical structures such as cutter assemblies, abrasive materials and/or shaped tools, excision devices, ablation instruments employing modalities such as RF, laser or radiation-induced ablation modalities, ultrasound, fluid jets or fluid agitation and the like. Other types of interventional catheters may provide fluid infusion and/or aspiration alone, or in combination with another diagnostic or treatment modality. Many of these systems involve placement of a guiding catheter and/or guide wire prior to introduction of the interventional catheter, facilitating navigation of the interventional catheter to the target operating site and manipulation of the interventional catheter at the target site.

"Many material removal devices and interventional catheters incorporate mechanical aspiration systems to remove fluid, disease material and/or particulate debris from the site. Some systems incorporate, or are used in conjunction with, other mechanisms such as distal filters, for preventing material dislodged during the procedure or debris generated during the procedure from circulating in the blood stream. Some interventional catheter systems incorporate or are used in conjunction with a fluid infusion system providing delivery of fluids to an interventional site. Interventional catheter systems may also incorporate or be used in conjunction with imaging systems and other types of complementary and/or auxiliary tools and features that facilitate desirable placement and operation of the system during an interventional procedure.

"One or more controllers are generally provided for operating an interventional catheter. Some types of interventional catheters employ a single operational and control component interfacing with and mounted to the interventional catheter at a proximal end of the catheter. In devices that interface with a single operating and control component, system operating components may be housed in the operating and control component, and user interface controls for operating the catheter and operating head are provided on the operating and control component. Various control features for activating and operating the interventional catheter, its aspiration and/or infusion systems, and/or its operating head may be provided. Status indicators, system read-outs and operating information may also be provided on interventional catheter operating and control components.

"Some interventional catheter systems employ a console-type controller that interfaces directly with interventional catheter components, while some interventional catheter systems employ both a console-type controller that houses non-disposable components such as pumps, drive systems, electrical, electronic, vacuum and fluid control systems, and the like, as well as another intermediate control device that provides operator control options and, in some cases, feedback information. The intermediate control device is typically located at or near a proximal end of the interventional catheter, and may be positioned within or close to the sterile field during a procedure. Interventional catheter systems employing both a console-type controller and an intermediate control device are described, for example, in PCT International Publication WO 2008/042987 A2, the disclosure of which is incorporated herein by reference in its entirety. Patients may also be monitored during an interventional procedure using separate or integrated systems, such as fluoroscopic or other visualization systems, vital sign monitoring systems, and the like.

"During setup of an interventional catheter system employing a control module, an operator typically connects or otherwise operably interfaces components of the interventional catheter assembly, or an intermediate control system generally designed for single patient use, to the reusable console-type control module. In many cases, this involves installing infusion and/or aspiration tubing in the console, interfacing the tubing with pump(s), infusion sources, aspiration receptacles, priming the infusion system, and the like. The operator then navigates the catheter to a desired interventional site and is ready to operate the catheter.

"Some interventional catheter systems operate according to pre-set operating parameters and allow the operator to activate and inactivate the device only, without allowing the operator to select or vary operating parameters based on individual patient and intervention conditions. Some interventional catheter systems provide user operable controls that allow an operator to select or vary at least some of the interventional catheter operating parameters. Many interventional catheter systems that employ a rotating operating head, for example, provide an interface permitting the operator to control the rotational speed of the operating head during an interventional procedure. In other interventional catheter systems, control and interface systems are provided to allow the operator to select, set, adjust or otherwise configure various user selectable operating parameters and/or system settings. There may be numerous such user selectable and adjustable operating parameters and/or system settings that may be established and/or selected prior to proceeding with an intervention, or during an intervention. Suitable operating parameters depend on the nature of treatment and the disease or condition state, the patient's anatomy and condition, the specific interventional catheter in use and the operating capabilities of the interventional catheter, and the operator's preferences and expertise.

"Technology for providing coded operating information in association with a single use interventional catheter assembly and conveying that coded operating information to a drive unit has been proposed. U.S. Patent Publication 2007/0073233 A1, for example, discloses a thrombectomy catheter deployment system that simplifies set-up procedures in systems employing a disposable thrombectomy pump/catheter assembly that mounts in a stand-alone drive unit for operation. The single use pump catheter system incorporates a plurality of preconnected structures, including a tubular structure, for interfacing with mating structures in the drive unit and for automatic engagement and alignment, or disengagement, of components in the single use pump/catheter assembly with the drive unit. The drive unit uses digital technology to enable multiple operating modes encoded on individual pump/catheter assemblies using barcode or radio frequency identification technology. Operating mode parameters such as pump stroke length, downstroke speed, acceleration time, and the like are encoded on the pump/catheter assembly so that, when it is mounted on the drive unit, calibration and operating mode information is automatically provided to the drive unit.

"Surgical systems employing multiple surgical devices having different operational limits that are mountable on and used with a common drive system or handpiece are disclosed, for example, in U.S. Pat. No. 4,705,038 (Re. 34,556). In this system, each surgical device has an indicator on its proximal portion indicating its operational limits, and the handpiece has an automatic sensor (e.g., a magnetic sensor) for detecting and reading the indicator. When the surgical device is mounted on the handpiece and the operational limits are detected, the handpiece operates the motor drive in accordance with the operational limits coded by the surgical device. This allows multiple surgical devices, each having different operating limits and characteristics, to be operated by a common drive and controller.

"Similar coding systems have been proposed for use with other types of devices, such as power toothbrushes, may permit the use of multiple detachable brush heads with a common drive housed in a handle. Coding systems for recognizing different brush heads mounted on a common handle have been developed. Systems for conveying data, such as operational data, from the brush head to the handle using RFID technology have also been developed. For example, U.S. Pat. No. 7,024,717 discloses radio signal communication between the handle of a tooth brush and a cleaning tool, and a memory element in the cleaning tool for storing data identifying the cleaning tool and indicating one or more operating parameters.

"The present invention is directed to interventional catheter operating systems and adaptive components that allow different types of interventional catheter assemblies to be operated using a common control module and common operating systems. In particular, the present invention provides interventional catheter operating consoles having aspiration and/or infusion systems that can be used with a range of interventional catheters having aspiration and/or infusion capabilities, and to adaptive components such as tubing cassettes and controllers used to interface between the operating console and the interventional catheter."

In addition to obtaining background information on this patent, NewsRx editors also obtained the inventors' summary information for this patent: "The present invention provides interventional catheter assemblies that may be employed to rapidly and effectively aspirate, irrigate, deliver materials to and/or remove unwanted material from body lumens or cavities, control consoles housing operative components for operating interventional catheters, and adaptive interface components such as tubing cassettes and controllers used to provide an interface between interventional catheter assemblies and a common control console. Interventional catheter assemblies, control and operating systems and adaptive components disclosed herein may be adapted for use in a wide variety of interventional procedures within a variety of body lumens or cavities such as blood vessels and vascular cavities, gastrointestinal cavities, lumens or cavities in the urinary system and in male and female reproductive organs, and other fluid cavities such as pulmonary lumens and gas exchange cavities, nasal and sinus cavities and the like.

"Interventional catheter assemblies of the present invention may be used, for example, for removing undesired material from native blood vessels such as native coronary, renal, cranial, peripheral and other blood vessels, artificial or grafted vessels such as saphenous vein grafts, and the like. The lumen may have implanted devices such as stents or ports in place. Undesired material that is removed using interventional catheter assemblies and control systems disclosed herein may be disease material such as atherosclerotic plaque, calcified plaque, thrombus, or other types of deposits, gallstones, a valve or portion thereof, undesired fluids, and the like. Fluids delivered to a desired target site may include saline and other biocompatible fluids, diagnostic or therapeutic agents, fluoroscopic and other imaging agents, and the like. Tools and materials delivered to a desired target site may include implantable devices, interventional devices, visualization tools, micro-surgical tools, and the like. In certain circumstances, interventional catheters disclosed herein are employed in the treatment of cardiovascular or peripheral artery disease to remove disease material from blood vessels, including peripheral blood vessels.

"Interventional catheter assemblies generally include an elongated, flexible catheter component that is at least partially inserted into and navigated within a patient's body, through lumens and/or cavities, while an operator controls the system externally of the patient's body. The interventional catheter assembly may be navigated to a desired interventional site over a guide wire or using a guiding catheter or sheath assembly. Many of the interventional catheters disclosed herein incorporate a component that is operable by a user when positioned at or near a target intervention site, referred to herein as an 'operating head,' which is generally positioned at or near the distal end of the interventional catheter. The interventional catheter assembly interfaces, at a proximal portion that remains outside the body, with a control module or another controller by means of fluidic connections (using, e.g., infusion and/or aspiration tubing), electronic connections, electrical connections, wireless communications protocols, and the like.

"As used herein, 'proximal' refers to a direction toward the system controls and the operator along the path of the catheter system, and 'distal' refers to the direction away from the system controls and the operator along the path of the catheter system toward or beyond a terminal end of the operating head.

"In some embodiments, an operating head, or a component of an operating head, may be operably connected to a rotatable and/or axially translatable drive shaft, drive system and one or more control systems. A rotatable operating head may incorporate one or more cutter or ablation elements. In some embodiments, an operating head may comprise an abrasive surface or an abrasive material provided on a surface of a rotational element. In alternative embodiments, the operating head may comprise another type of material removal device, such as a plaque excision device, a laser ablation or high frequency ultrasound ablation device, or a radio frequency or heat-producing or electrical device that operates to remove unwanted material from body lumens or cavities and generally does not rotate during operation. An operating head may be advanced by operator manipulation or by mechanical systems, or by a variety of other systems, including electrical systems, radio frequency, stereotactic and other remotely controlled systems. The operating head may incorporate aspiration and/or infusion features, device or tool delivery features, material removal features and the like, and may provide additional functionalities such as ultrasound guidance (or guidance using another modality), various types of visualization and imaging features, and the like.

"Fluidic communication between a distal portion of the interventional catheter and/or an operating head and externally positioned components of the interventional catheter assembly may be provided through one or more sealed passageways of the catheter system. Sealed aspiration and/or infusion lumens provided in the interventional catheter assembly generally interface with aspiration and/or infusion tubing, which in turn interfaces with aspiration and/or infusion systems, such as pumps, vacuum devices, infusate sources, and the like, provided in connection with operating and control systems. Communication systems or pathways may also be provided for delivery of power, for rotationally driving (or otherwise operating) and/or translating an operating head, for implementing various control features, and the like. The system components described below are described as exemplary components and are not intended to limit the scope of the invention.

"A control console is generally provided as a reusable system that houses certain interventional catheter assembly operating systems, such as aspiration and/or infusion systems, and interfaces with an interventional catheter to provide suitable aspiration and/or infusion pressures to appropriate interventional catheter lumens, to provide power to the interventional catheter as necessary, and the like. The interventional catheter aspiration and infusion lumens generally communicate with and terminate proximally in aspiration and infusion tubing, which interfaces with aspiration and infusion systems in the console and infusion reservoirs and aspirate receptacles provided externally of the interventional catheter.

"The present invention contemplates a family of interventional catheters having different operating capabilities, features and parameters that may be operated on a common control console. In many embodiments, interventional catheter assemblies are provided as single use devices that interface with a reusable control console. The catheter assemblies are typically provided as sterile devices and are operated in the sterile field during an intervention, while the control console is generally used outside the sterile field. The control console may be provided as a stationary, table-top type device; it may be mounted on a portable platform such as a cart or IV pole or the like; or it may be provided as a system integrated with other interventional or patient monitoring systems.

"In general, the present invention provides interventional catheter assemblies and adaptive interface components for operating and controlling interventional catheter assemblies having aspiration and/or infusion and/or operating head capabilities using a common control console housing aspiration and/or infusion and/or operating head drive systems. A common control console may thus be used to operate an aspirating interventional catheter, such as a thrombectomy device, as well as a simple infusion catheter, as well as atherectomy and thrombectomy devices that operate using either or both aspiration and infusion systems. The control console may also incorporate other operating and control features, drive systems, power supplies, and the like, that may interface with an interventional catheter assembly.

"Instructions for operating an interventional catheter assembly using operating and control systems (e.g., infusion and/or aspiration systems) provided in an independent control console may be predetermined and may be provided on or encoded in an instructional component associated with each interventional catheter assembly. In one aspect, interventional catheter assemblies of the present invention comprise operating instructions encoded within the interventional catheter assembly that are communicated to and effectuated by the control console when the interventional catheter is interfaced with the control console. In this scheme, interventional catheter assemblies having a range of operating capabilities and optional operating characteristics may be operated in accordance with operating parameters, protocols, and the like, specified by operating instructions encoded in each interventional catheter assembly. In one embodiment, operating instructions are stored in a memory device, such as an EEPROM, associated with the interventional catheter assembly and communicated to the control console when the interventional catheter assembly is electrically connected to a control console. It will be appreciated that other types of memory and electronic storage devices may be used for storing operating instructions and communicating them to a control console.

"Memory and storage devices containing operating instructions for operation of interventional catheter assemblies may alternatively be provided on discrete adaptive interface components, such as dongles or other types of storage devices, that may interface with either the control console or the interventional catheter assembly, or both, to communicate operating information to the control console.

"In another aspect, multiple instruction sets for operating different interventional catheter assemblies, or for operating common interventional catheter assemblies according to different operating protocols, are provided in an electronic memory or storage device associated with the interventional catheter assembly, or the control console, or an adaptive interface component and, when an interventional catheter assembly is interfaced with a control console, a detection system identifies the type and capabilities of the interventional catheter assembly and, based on that detection, selects operating instructions tailored to the interventional catheter assembly. In another embodiment, a detection system identifies the type and capabilities of the interventional catheter assembly and provides a menu of potential operating protocols, or prompts a user to select from among multiple matching operating protocols. These embodiments are described for illustrative purposes; it will be appreciated that many different control and detection schemes may be provided for operating interventional catheter assemblies having different capabilities or operating protocols on a common control module.

"In one aspect, interventional catheters of the present invention may have authentication features encoded within the interventional catheter assembly that interface with a control console to authenticate the interventional catheter for use on the control console and, upon a successful authentication, allow operation of the interventional catheter on the control console. Authentication protocols may additionally be provided to allow operation by authorized operators, and to communicate operating instructions, parameters, limits, and the like, to the control console.

"The control console receives instructions from the interventional catheter system or an auxiliary device and, provided an authentication protocol is successfully executed, operates the interventional catheter assembly accordingly. The control console may interface with and operate many different interventional catheter devices having different operating capabilities and parameters. Instructions may also be provided for operating interventional catheter assemblies having the same or similar operating capabilities according to different operating parameters, as well as multiple and different sets of operating parameters, depending on the device or interventional catheter system being used and interfacing with the console.

"In another aspect, adaptive components such as tubing cassettes having various configurations are provided for operating different types of interventional catheters on a common control console. In one embodiment, for example, a tubing cassette having a housing through which aspiration and/or infusion tubing is conveyed, is provided for interfacing with aspiration and/or infusion systems provided on a control console. The tubing cassette may route aspiration and/or infusion tubing in a predetermined configuration to mate with aspiration and/or infusion systems in the control console, and may also mate with a mechanical interface provided on the control console to provide stable mounting of the tubing cassette during an intervention. The tubing cassettes are preferably provided as part of and integrated with the interventional catheter assembly.

"For control consoles incorporating peristaltic pumps as aspiration and/or infusion systems, for example, adaptive tubing cassettes comprising a housing component and one or more tubing loops sized and configured for mating with a tubing pathway in a peristaltic pump are provided. Adaptive tubing cassettes are designed to position the aspiration and/or infusion tubing between the pump rollers, facilitating loading of the fluid tubing providing fluidic communication with the interventional catheter assembly on the control console.

"The size, configuration, composition and positioning of the tubing loop(s) may be selected based on the type of aspiration and/or infusion system used, desired pump configurations, operating infusion and/or aspiration volumes and pressures, and the like. In one embodiment, adaptive tubing cassettes provide tubing loops for interfacing with both of the infusion and aspiration systems provided on the control console; in alternative embodiments, adaptive tubing cassettes may provide a single tubing loop for interfacing with only the infusion system or the aspiration system, depending on the capabilities of the interventional catheter assembly."

For more information, see this patent: Eubanks, Shannon; Schubert, Keith; Bristol, Peter; Vilbrandt, Patrick. Interventional Catheter Assemblies, Control Consoles and Adaptive Tubing Cassettes. U.S. Patent Number 9775964, filed , and published online on . Patent URL:

Keywords for this news article include: Surgery, Cardiology, Technology, Thrombosis, Thrombectomy, Blood Vessels, Cardio Device, Atherosclerosis, Catheter System, Infusion System, Medical Devices, Cardiovascular System, BOSTON SCIENTIFIC LIMITED, Diagnostics and Screening, Vascular Surgical Procedures, Cardiovascular Diseases and Conditions.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2017, NewsRx LLC

DISCLOSURE: The views and opinions expressed in this article are those of the authors, and do not represent the views of Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to:


Emerging Growth

Margaux Resources Ltd.

Margaux Resources Ltd is a Calgary based resource company. The Company is focused on its Jersey Emeral Tungsten-Zinc property located in the southeast portion of British Columbia.